NASA Television Coverage Set for Weather Satellite Science Briefing, Launch


Portal origin URL: NASA Television Coverage Set for Weather Satellite Science Briefing, LaunchPortal origin nid: 418856Published: Tuesday, February 20, 2018 - 14:00Featured (stick to top of list): noPortal text teaser: The National Oceanic and Atmospheric Administration’s (NOAA’s) newest weather satellite, Geostationary Operational Environmental Satellite-S (GOES-S), is scheduled to launch Thursday, March 1. The launch, as well as prelaunch and science briefings on Tuesday, Feb. 27, will air live on NASA Television and the agency’s website.Portal image: Geostationary Operational Environmental Satellite-S (GOES-S)Science Categories: Earth

NASA's James Webb Space Telescope to Reveal Secrets of the Red Planet


The planet Mars has fascinated scientists for over a century. Today, it is a frigid desert world with a carbon dioxide atmosphere 100 times thinner than Earth’s. But evidence suggests that in the early history of our solar system, Mars had an ocean’s worth of water. NASA’s James Webb Space Telescope will study Mars to learn more about the planet’s transition from wet to dry, and what that means about its past and present habitability.

News Article Type: Homepage ArticlesPublished: Tuesday, February 20, 2018 - 11:43

New Atmosphere Wind/Temperature Sensor to Improve Space Weather Prediction


This blog post originated in the 2016 Science Mission Directorate Technology Highlights Report (20 MB PDF).

Technology Development

Global wind and temperature measurements in the lower thermosphere (100-150 km above Earth) are the two most important variables needed to accurately predict space weather and climate change. An innovative technique is being developed jointly by the Johns Hopkins University Applied Physics Laboratory, GSFC, and JPL to make these measurements using the atomic oxygen emission at 2.06 THz (145 μm).

A new sensor, called the TeraHertz Limb Sounder (TLS), will make these critical measurements under a wide range of observation conditions (e.g., day and night, with and without aurora present) from a low Earth orbit. Not only will TLS measurements enable scientists to study neutral atmosphere interactions with the ionosphere and magnetosphere above, they will improve our fundamental understanding of the mechanisms and effects in Earth’s upper atmosphere and other planetary and stellar atmospheres. The data will also help researchers understand how the upper atmosphere is affected by solar variability (i.e., radiation, magnetized solar winds, and energetic particles) and lower-atmospheric disturbances—critical geophysical processes that influence numerous space weather phenomena that present hazards to spacecraft, humans in space, and technological infrastructure on the ground.

Close-up of the 2.06 THz Schottky diode mixer (left); a computer-generated model of the full TLS instrument (right). (Credit: NASA JPL)

The TLS instrument is enabled by a high-sensitivity gallium arsenide (GaAs)-diode-based heterodyne receiver that operates at room temperature. In 2016, the team developed the high-frequency Schottky diode shown on the previous page, which mixes the incoming signal from 2.06 THz down to an intermediate frequency band to measure spectral emission features from atomic oxygen in the atmosphere. This advanced mixer technology can be used to build compact, low-mass and low-power instruments for NASA’s small satellite missions.


TLS development will mature and optimize a low-noise, high-sensitivity THz receiver to advance Heliophysics science in future space weather missions with reduced cost and schedule risks. This development effort focuses on the receiver system integration, optimization, and demonstration of key subsystem performance. This THz receiver system is designed to operate at an ambient temperature in space using passive radiators, thus removing the need for a dedicated resource-demanding cryocooler.

Status and Future Plans

In 2016, the team completed development of the TLS receiver concept and successfully designed and fabricated the Schottky diode mixer. Ongoing research is focused on building a model prototype instrument and making receiver-sensitivity measurements to verify receiver performance.

Sponsoring Organization

The SMD Heliophysics Division’s H-TIDeS program provides the funding for this technology development effort. The PI is Dr. Jeng- Hwa (Sam) Yee at the Johns Hopkins University Applied Physics Laboratory.

Read more Technology Stories

Master Image: 

Are Quark Stars Possible? -

Ultradense quark stars, which mash together one of the universe's fundamental particles, may or may not be a physical possibility.


Subscribe to San Bernardino Valley Amateur Astronomers aggregator - News