Three NASA Missions Return 1st-Light Data

Portal origin URL: Three NASA Missions Return 1st-Light DataPortal origin nid: 432843Published: Friday, September 21, 2018 - 11:43Featured (stick to top of list): noPortal text teaser: NASA’s continued quest to explore our solar system and beyond received a boost of new information this week with three key missions proving not only that they are up and running, but that their science potential is exceptional.Portal image: first-light image from Parker Solar ProbeScience Categories: Sun

Advancing Local Terahertz Oscillators to Enable Cosmic Observations

This blog post originated in the 2017 Science Mission Directorate Technology Highlights Report (33 MB PDF).

Technology Development

NASA is developing a new type of detector that will provide insight into the formation and structure of the universe. Many of the radiative and mechanical interactions that shape the interstellar medium of galaxies and drive galactic evolution (e.g., shock waves from stellar winds and jets, supernova explosions, etc.) are best observed in the 4.744 terahertz (THz) spectral region for the oxygen line. Observations of this spectral line have rarely been performed, however, because the 4.744-THz frequency is beyond the reach of most existing local oscillators that operate in heterodyne receivers sensitive enough to make such observations. A NASA-sponsored team at Massachusetts Institute of Technology (MIT) is working to advance technologies that will enable upcoming NASA missions to include receivers that observe this important spectral line.

Heterodyne detection compares the incoming light signal with a reference light from a local oscillator (LO). Key challenges of this project are to increase the LO output power from the currently achievable level of <1 mW to 5 mW, and to increase the operating temperature from a lab-demonstrated ~10 K to ~40 K—a temperature that can be accommodated by a space-based or suborbital observatory. To achieve The large circuit board on the left is a previous ASIC design. The three rectangular segments provide three antenna inputs, supporting four 20-MHz channels, and require approximately 5 W of power. To the right is the new ASIC chip. By adding a few small components, such as connectors, it will provide three antenna inputs, with the equivalent of twelve 40-MHz channels, and require only 1 W of power. (Image Credit: Michael Shaw, GigOptics, Inc.) 12 | 2017 SMD Technology Highlights these objectives, the project team is developing local oscillators based on THz quantum-cascade lasers (QCL), which can pump a seven-element heterodyne receiver array. These local oscillators must emit single-frequency radiation with good spectral purity (narrow linewidth <1 MHz at 4.7 THz), which can only be achieved using Distributed-FeedBack (DFB) grating structures. The team investigated three different DFB structures for potential use in the receiver and selected the best option, which has a unidirectional beam pattern (it only radiates in the forward direction) with high output power levels. A picture of such a structure is shown in the figure below.

The figure above shows: (a) an array of 3rd-order DFB lasers gold wire bonded to an electronic chip, (b) a photo of a fabricated array of DFB triplets, (c) scanning electron microscope image of a DFB device showing three periods, and (d) a schematic of a triplet with the corresponding radiation profile. Impact

A receiver array capable of observing the 4.744-THz frequency will provide new and unique insights into the interrelationship of stars and gas in a wide range of galactic and extragalactic environments. NASA plans to deploy receivers using this technology on the upcoming GUSTO mission (Galactic/Extragalactic Ultralong-Duration Balloon Spectroscopic Terahertz Observatory), a long-duration balloon payload targeted for launch in 2021. The technology also has potential applications for the upcoming Single Aperture Far-Infrared Observatory (SAFIR) mission, a large cryogenic space telescope envisioned as a follow-on to the Spitzer Space Telescope and the Herschel Space Observatory. In addition to astrophysics, THz QCLs will be useful in a wide range of applications in areas such as security, biochemical sensing, and biomedical imaging.

Future Plans

In the near future, the team will develop flight-ready local oscillators for suborbital missions such as GUSTO. In the long term, the work will involve development of local oscillators for space-based observatories such as SAFIR, which will involve devices with even higher performance requirements.

Sponsoring Organization

SMD’s Astrophysics Division sponsors this project via the SAT program by providing funding to PI Dr. Qing Hu at MIT.

Read more Technology Stories

Master Image: 

NASA Hosts Science Chat on Upcoming Historic Planetary Encounter

Portal origin URL: NASA Hosts Science Chat on Upcoming Historic Planetary EncounterPortal origin nid: 432546Published: Monday, September 17, 2018 - 16:27Featured (stick to top of list): noPortal text teaser: Members of NASA’s New Horizons spacecraft team will host a Science Chat at 1 p.m. EDT Wednesday, Sept. 19, on humanity’s farthest planetary flyby, scheduled to occur Jan. 1 when the spacecraft encounters a mysterious object in the Kuiper Belt nicknamed “Ultima Thule.”Portal image: Illustration of NASA’s New Horizons spacecraft encountering the Kuiper Belt object nicknamed Ultima Thule on Jan. 1, 2019Science Categories: Solar System

NASA, ULA Launch Mission to Track Earth's Changing Ice

Portal origin URL: NASA, ULA Launch Mission to Track Earth's Changing IcePortal origin nid: 432450Published: Saturday, September 15, 2018 - 10:15Featured (stick to top of list): noPortal text teaser: NASA’s Ice, Cloud and land Elevation Satellite-2 (ICESat-2) successfully launched from California at 9:02 a.m. EDT Saturday, embarking on its mission to measure the ice of Earth’s frozen reaches with unprecedented accuracy.Portal image: The United Launch Alliance (ULA) Delta II rocket with the NASA Ice, Cloud and land Elevation Satellite-2 (ICESat-2)Science Categories: Earth

NASA-funded ELFIN To Study How Electrons Get Lost

Portal origin URL: NASA-funded ELFIN To Study How Electrons Get LostPortal origin nid: 432306Published: Friday, September 14, 2018 - 12:00Featured (stick to top of list): noPortal text teaser: The NASA-funded, UCLA built ELFIN Cubesat will launch on Sept 15, piggy-backing with NASA's ICESat-2, to study how electrons are lost from the Van Allen Belts.Portal image: artist’s depiction of the Van Allen BeltsScience Categories: Sun

NASA Astrophysics Eyes Big Science with Small Satellites

Portal origin URL: NASA Astrophysics Eyes Big Science with Small SatellitesPortal origin nid: 432230Published: Wednesday, September 12, 2018 - 16:23Featured (stick to top of list): noPortal text teaser: NASA has selected nine proposals to study using small satellites, or SmallSats, for advanced astronomical space-based observations. The proposed SmallSat studies are a fraction of the size, weight, and cost of a typical space-bound astrophysics mission.Portal image: CubeSats Deployed Outside Station's Kibo Lab ModuleScience Categories: Universe

Nicola Fox Takes Helm as Director of NASA’s Heliophysics Division

Portal origin URL: Nicola Fox Takes Helm as Director of NASA’s Heliophysics DivisionPortal origin nid: 419377Published: Tuesday, September 11, 2018 - 17:27Featured (stick to top of list): noPortal text teaser: NASA’s Science Mission Directorate has selected Nicola Fox to be the next director of SMD’s Heliophysics Division. It is anticipated that Fox will join SMD in August of this year. Heliophysics studies our Sun, and how it influences space, planetary environments, and the entire solar system.Portal image: Nicola FoxScience Categories: Sun

Where to Place a Rainwater Harvesting System

On any given day, Zoubaida Salman instructs a classroom of 15-year-olds at the Sur Baher Girls School in East Jerusalem, where she has served as the science teacher and Environment and Health Coordinator for the past 22 years. One of the most important lessons comes from their backyard: water is scarce and precious in this region.

Water shortages can lead to major sanitation issues at schools, so students have to play an active role in managing it. At Sur Baher, the most significant use of water is for flushing toilets, which stop working if there is not enough water. If the water runs out, school administrators must buy it from the city. In other regions, the schools even close because of water shortages.

A team of scientists with the NASA DEVELOP program is helping address these water shortages by collaborating with a nonprofit called Water Resources Action Project(WRAP). WRAP designs and constructs rainwater harvesting systems for schools in the Middle East to capture rainfall during the five-month rainy season for use later. Selecting a geographically promising area is time-consuming and tedious work though for the small, volunteer-based team. The NASA DEVELOP team is using satellite data to help WRAP more easily identify suitable locations for the rainwater harvesting systems.

The NASA-developed tool helps locate potential areas by looking at the region’s historical satellite data of precipitation, groundwater availability, land elevation, and evapotranspiration (the amount of water evaporating from the leaves of plants and from the land surface).

NASA Earth Observatory images by Joshua Stevens, using data courtesy of Vishal Arya and the NASA DEVELOP Program

The maps above show some of the satellite data used to determine suitable locations. The first image shows precipitation from 2006 to 2016, which has remained fairly constant. The precipitation data came from the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission and were validated with NOAA’s Global Surface Summary of the Day.

The second set of maps shows groundwater availability as observed by the Gravity Recovery and Climate Experiment (GRACE). Since 2006, the Middle East has experienced a net decrease in groundwater.

“We wanted to incorporate data from NASA’s Earth-observing satellites, specifically on precipitation,” said Vishal Arya, who worked on the project at NASA Langley Research Center. “We looked for a correlation between precipitation and environmental factors that could be used to identify areas that would be good candidates for a rainwater harvesting system.”

The data sets have been combined into an interactive Google Earth interface tool called Precipitation Interface for the Middle East (PrIME). PrIME also includes land elevation data from the Shuttle Radar Topography Mission (SRTM) and evapotranspiration data from the Moderate Resolution Imaging Spectroradiometer(MODIS) on the Terra satellite. The tool also includes school locations.

“NASA has served as an invaluable resource, providing WRAP with a readily available decision-making tool,” said Brendan McGinnis, Executive Director of WRAP. “The satellite data show specific numbers over areas affected with limited rainfall and groundwater, rather than us approximating those measurements.”

Before the PrIME tool, WRAP set up rainwater harvesting systems in ten different schools across the Middle East. Now, WRAP has expanded its efforts into Jordan and Palestine. McGinnis hopes to have similar success as its existing programs. At the Al-Afaq School for Special Education in East Jerusalem, WRAP’s rainwater harvesting system has provided nearly 70 percent of the school’s total water needs. Other schools have depended less on water provided by the city.

“The rainwater harvesting system helped us minimize water consumption from the city, especially in winter, and decreased water bills,” said Salman.

Story by Kasha Patel.

Read more Making Space for Earth blog posts

Master Image: 

NASA Television to Air Launch of Global Ice-Measuring Satellite

Portal origin URL: NASA Television to Air Launch of Global Ice-Measuring SatellitePortal origin nid: 431723Published: Tuesday, September 4, 2018 - 16:21Featured (stick to top of list): noPortal text teaser: NASA’s Ice, Cloud and land Elevation Satellite-2 (ICESat-2), a mission to measure the changing height of Earth's ice, is scheduled to launch Saturday, Sept. 15, with a 40-minute window opening at 8:46 a.m. EDT (5:46 a.m. PDT).Portal image: Illustration of NASA’s Ice, Cloud and land Elevation Satellite-2 (ICESat-2), a mission to measure the height of Earth's ice.Science Categories: Earth

NASA-funded Rocket to View Sun with X-Ray Vision

Portal origin URL: NASA-funded Rocket to View Sun with X-Ray VisionPortal origin nid: 431695Published: Tuesday, September 4, 2018 - 13:52Featured (stick to top of list): noPortal text teaser: The FOXSI sounding rocket will scour the Sun with X-ray vision, looking for the mysterious mini-explosions that heat the corona to millions of degrees.Portal image: FOXSI prior to 2012 launchScience Categories: Sun

NASA Invites Media to View Spacecraft to Study the Frontier of Space

Portal origin URL: NASA Invites Media to View Spacecraft to Study the Frontier of SpacePortal origin nid: 431584Published: Friday, August 31, 2018 - 16:16Featured (stick to top of list): noPortal text teaser: NASA is inviting media to view NASA’s Ionospheric Connection Explorer (ICON) spacecraft Thursday, Oct. 4, ahead of its scheduled launch aboard a Northrop Grumman Pegasus XL rocket Saturday, Oct. 6, at 4 a.m. EDT from Cape Canaveral Air Force Station (CCAFS) in Florida.Portal image: Illustration of NASA's ICON mission in orbitScience Categories: Sun

NASA Earth Science Director Announces Retirement

Michael Freilich, director of the Earth Science Division in the Science Mission Directorate at NASA Headquarters since 2006, announced he will retire from the agency in February 2019. Freilich leads NASA’s mission to increase understanding of our home planet and help safeguard and improve lives for humanity’s future.

A frequent speaker at major Earth science meetings worldwide,
Freilich describes how Earth-observing satellites have
revolutionized our understanding of our home planet. Credit/NASA

“Words are not enough to express my deep appreciation for Mike Freilich’s dedication, creativity, and operational vision that has so positively impacted not only Earth science but also the broader NASA research community,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate at the agency’s headquarters in Washington. “Mike leaves an extraordinary legacy that will be remembered here at NASA and by future generations that will inhabit our planet.”

Freilich helped drive the evolution of NASA Earth science from a program that launched an Earth-observing space mission every few years to one that launches several missions each year while preserving balance between orbital flight missions, research, applications, and technology development activities.

(GRACE-FO) mission launched on board a SpaceX Falcon 9 rocket in May 2018,
from Space Launch Complex 4E
 at Vandenberg Air Force Base in California. Credit/NASA

He led NASA’s response to the National Academy of Sciences’ first-ever Earth Science and Applications from Space decadal survey, expanding the agency’s innovative Earth-observing programs.

Along with his colleagues in the Earth Science Division, Freilich established the sustained Venture-Class program of low-cost space and airborne science missions that is now a central feature of the Earth Science Division portfolio. He also pioneered the broad use of the International Space Station as a platform for Earth-observing instruments, and he inaugurated a NASA activity to use data products from private sector, small-satellite constellations to supplement traditional government data sources.

Wildfires seen in northern California in the Mendocino National Forest and near the
San Francisco Bay Area as the International Space Station orbited 252 miles above
the Pacific Ocean. Credit/NASA

Under Freilich’s leadership, NASA also established cutting-edge programs to use small satellites and payloads hosted on commercial satellites to advance Earth science research and to demonstrate new technologies.

During Freilich’s tenure at NASA Headquarters, he oversaw 16 successful major mission and instrument launches and 8 CubeSat/small-satellite launches; the Earth science program has some 20 additional large Earth-observing missions and major hosted instruments well along in development for launch before 2023.

“It has been a great privilege to be able to help strengthen NASA’s Earth science and applications programs and to contribute to advancing humanity’s knowledge of our home planet,” said Freilich. “But understanding our complex globe takes a dedicated, skilled, and creative team of scientists and engineers. The tight-knit group of NASA professionals at Headquarters and the Centers, along with our colleagues in industry and academia, are among the best that our agency and nation have ever assembled. I am honored to have had a chance to work with, and learn from, the NASA Earth science team.”

According to Zurbuchen, NASA will issue an announcement this fall to begin the search for a successor, providing ample time to identify a highly qualified candidate to lead this exceptional area of NASA science.

“I want Mike’s successor to be on board so as to ensure a smooth transition and allow the new director time to fully understand the team’s chemistry and structure and how the division collaborates with other agencies and international partners,” said Zurbuchen.

The edge of the Larsen Ice Shelf meets open water and sea ice, viewed from above
during the 20th Ice Bridge flight in Antarctica. The flight, which lifted off on Nov. 16, 2009,
surveyed the Antarctic Peninsula including the Larsen Ice Shelf and nearby glaciers. 
Credit: Michael Studinger, Lamont-Doherty Earth Observatory

NASA science monitors Earth’s vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA also develops new ways to observe and study Earth's interconnected natural systems with long-term data records. Scientists worldwide use NASA data to tackle some of the biggest questions about how our planet is changing now and how Earth could change in the future. From rising sea levels to the changing availability of freshwater, NASA enables studies that unravel the complexities of our planet from the highest reaches of Earth’s atmosphere to its core.

“NASA’s Earth Science Division team has unmatched expertise, effectiveness, and passion,” said Zurbuchen. “There is clearly strong support within NASA and among all of our stakeholders for continuing groundbreaking work in Earth science and for using the knowledge to improve people’s lives within the United States and beyond.”

Freilich graduated from Haverford College in 1975 and received his Ph.D. from Scripps Institution of Oceanography in 1982. Prior to coming to NASA Headquarters, Freilich had been a professor and associate dean at Oregon State University for 14 years. He was a researcher and mission principal investigator at the Jet Propulsion Laboratory from 1983 through 1991. At JPL and Oregon State, he also served as science lead on three NASA orbital missions to measure global ocean surface winds.

An elected Fellow of the American Meteorological Society, Freilich has won several awards over his career, including the JPL Director’s Research Achievement Award, the NASA Public Service Medal, and the AMS Verner Suomi Award. He delivered the National Research Council/Smithsonian Institution’s prestigious Roger Revelle Commemorative Lecture in 2008.

After almost a dozen years at NASA and more than three decades as an Earth scientist, and with his retirement still several months away, Freilich will continue his focus on the job at hand.

Imagining the future, he mused, “In the near term, my wife and I plan to travel and explore the planet we have committed to understand and protect. After I recharge, there are a few research questions I’d still like to solve. For sure, however, I look forward with great anticipation to the discoveries that the NASA team and our many partners will make in the coming years.”

Illustration of NASA's Earth-observing fleet. Credit/NASA

The NASA family will always be grateful for Mike Freilich’s service and contributions to the agency, the nation, and science.

For more information about NASA’s Earth science activities, visit:

News Article Type: Homepage ArticlesPublished: Tuesday, August 28, 2018 - 17:07

NASA Investment in Cholera Forecasts Helps Save Lives in Yemen

Portal origin URL: NASA Investment in Cholera Forecasts Helps Save Lives in YemenPortal origin nid: 431007Published: Monday, August 27, 2018 - 16:33Featured (stick to top of list): noPortal text teaser: For the first time ever, measurements from NASA Earth-observing research satellites are being used to help combat a potential outbreak of life-threatening cholera. Humanitarian teams in Yemen are targeting areas identified by a NASA-supported project that precisely forecasts high-risk regions based on environmental conditions observed from space.Portal image: UNICEF distributes clean water and information about cholera to prevent outbreaks of the disease in YemenScience Categories: Earth

How Scientists Predicted Corona’s Appearance During Aug. 21, 2017, Total Solar Eclipse

Portal origin URL: How Scientists Predicted Corona’s Appearance During Aug. 21, 2017, Total Solar EclipsePortal origin nid: 431250Published: Monday, August 27, 2018 - 13:12Featured (stick to top of list): noPortal text teaser: A week before the Aug. 21, 2017, total solar eclipse that was visible across the U.S., the country buzzed with anticipation. But the wait was uniquely nerve-wracking for a group of scientists at Predictive Science Inc. in San Diego. How would their predicted view of the corona, the result of a complex numerical model, compare to the real thing?Portal image: animation comparing a numerical model simulating appearance of corona during Aug. 21, 2017, eclipse with composite photosScience Categories: Sun